Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 193(1): 426-447, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300540

RESUMEN

Plants possess well-developed light sensing mechanisms and signal transduction systems for regulating photomorphogenesis. ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) transcription factor, has been extensively characterized in dicots. In this study, we show that OsbZIP1 is a functional homolog of Arabidopsis (Arabidopsis thaliana) HY5 (AtHY5) and is important for light-mediated regulation of seedling and mature plant development in rice (Oryza sativa). Ectopic expression of OsbZIP1 in rice reduced plant height and leaf length without affecting plant fertility, which contrasts with OsbZIP48, a previously characterized HY5 homolog. OsbZIP1 is alternatively spliced, and the OsbZIP1.2 isoform lacking the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-binding domain regulated seedling development in the dark. Rice seedlings overexpressing OsbZIP1 were shorter than the vector control under white and monochromatic light conditions, whereas RNAi knockdown seedlings displayed the opposite phenotype. While OsbZIP1.1 was light-regulated, OsbZIP1.2 showed a similar expression profile in both light and dark conditions. Due to its interaction with OsCOP1, OsbZIP1.1 undergoes 26S proteasome-mediated degradation under dark conditions. Also, OsbZIP1.1 interacted with and was phosphorylated by CASEIN KINASE2 (OsCK2α3). In contrast, OsbZIP1.2 did not show any interaction with OsCOP1 or OsCK2α3. We propose that OsbZIP1.1 likely regulates seedling development in the light, while OsbZIP1.2 is the dominant player under dark conditions. The data presented in this study reveal that AtHY5 homologs in rice have undergone neofunctionalization, and alternative splicing of OsbZIP1 has increased the repertoire of its functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Proteínas de Arabidopsis/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Luz , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Sci ; 330: 111631, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36773757

RESUMEN

Cryptochromes (CRYs) are a class of photoreceptors that perceive blue/ultraviolet-A light of the visible spectrum to mediate a vast number of physiological responses in bacteria, fungi, animals and plants. In the present study, we have characterized OsCRY2 in a photoperiod sensitive indica variety, Basmati 370, by generating and analyzing overexpression (OE) and knock-down (KD) transgenic lines. The OsCRY2OE lines displayed dwarfism as shown in their reduced plant height and leaf length, attributed largely by an overall reduction in their cell size. The OsCRY2OE lines flowered significantly earlier and showed shorter and broader seeds with an overall reduced seed weight. The OsCRY2KD lines showed contrasting phenotypes, such as increased plant height and delayed flowering, however, decreased seed size and weight were also observed in the KD lines, along with reduced spikelet fertility and high seed shattering rate in mature panicles. Novel interactions were confirmed between OsCRY2 and members of ZEITLUPE family of blue/ultraviolet-A light photoreceptors, encoded by OsFBO8, OsFBO9 and OsFBO10 which are orthologous to ZEITLUPE (ZTL), LOV KELCH PROTEIN2 (LKP2) and FLAVIN BINDING, KELCH REPEAT F-BOX1 (FKF1), respectively, of Arabidopsis thaliana. Since FKF1 is known to play a role in regulating photoperiodic flowering, OsFBO10 was chosen for further studies. OsCRY2 and OsFBO10 interacted in the nucleus and cytoplasm of the cell and cross-regulated the expression of each other. They were also found to regulate the expression of several genes involved in photoperiodic flowering in rice. Both OsCRY2 and OsFBO10 played a positive role in photomorphogenic responses in different light conditions. The physical interaction of OsCRY2 with OsFBO10, their involvement in common physiological and developmental pathways and their cross-regulation of each other suggest that the two photoreceptors may regulate common developmental pathways in plants, either jointly or redundantly.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Fotoperiodo , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz
3.
Protoplasma ; 260(4): 1063-1079, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36539640

RESUMEN

The OsFBT4 belongs to a small sub-class of rice F-box proteins called TLPs (Tubby-like proteins) containing the conserved N-terminal F-box domain and a C-terminal Tubby domain. These proteins have largely been implicated in both abiotic and biotic stress responses, besides developmental roles in plants. Here, we investigated the role of OsFBT4 in abiotic stress signalling. The OsFBT4 transcript was strongly upregulated in response to different abiotic stresses in rice, including exogenous ABA. When ectopically expressed, in Arabidopsis, under a constitutive CaMV 35S promoter, the overexpression (OE) caused hypersensitivity to most abiotic stresses, including ABA, during seed germination and early seedling growth. At the 5-day-old seedling growth stage, the OE conferred tolerance to all abiotic stresses. The OE lines displayed significant tolerance to salinity and water deficit at the mature growth stage. The stomatal size and density were seen to be altered in the OE lines, accompanied by hypersensitivity to ABA and hydrogen peroxide (H2O2) and a reduced water loss rate. Overexpression of OsFBT4 caused upregulation of several ABA-regulated/independent stress-responsive genes at more advanced stages of growth, showing wide and intricate roles played by OsFBT4 in stress signalling. The OsFBT4 showed interaction with several OSKs (Oryza SKP1 proteins) and localized to the plasma membrane (PM). The protein translocates to the nucleus, in response to oxidative and osmotic stresses, but failed to show transactivation activity in the yeast system. The OE lines also displayed morphological deviations from the wild-type (WT) plants, suggesting a role of the gene also in plant development.


Asunto(s)
Arabidopsis , Oryza , Oryza/metabolismo , Germinación/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Plantas Modificadas Genéticamente/genética , Peróxido de Hidrógeno/metabolismo , Arabidopsis/metabolismo , Plantones/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías
4.
Plant Cell Environ ; 46(4): 1207-1231, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36404527

RESUMEN

F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.


Asunto(s)
Proteínas F-Box , Oryza , Oryza/genética , Proteínas de Plantas/metabolismo , Sequías , Adaptación Fisiológica/genética , Estrés Fisiológico/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant Cell Rep ; 42(2): 235-252, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36437308

RESUMEN

KEY MESSAGE: The Arabidopsis Tubby-like protein (TLP) encoding gene, AtTLP2, plays intricate roles during ABA-dependent abiotic stress signalling, particularly salt and dehydration stress responses. TLPs (Tubby-like proteins) are a small group of eukaryotic proteins characterized by the presence of a Tubby domain. The plant TLPs have been widely shown to play important roles during abiotic stress signaling. In this study, we investigated the role of an Arabidopsis TLP, AtTLP2, in mediating abiotic stress responses. Both attlp2 null mutant and overexpression (OE) lines, in Arabidopsis, were studied which indicated the role of the gene also in development. The attlp2 mutant showed an overall dwarfism, while its overexpression caused enhanced growth. AtTLP2 localized to the plasma membrane (PM) and showed nuclear translocation in response to dehydration stress. The protein interacted with ASK1 and ASK2, but failed to show transactivation activity in yeast. AtTLP2 was transcriptionally induced by stress, caused by salt, dehydration and ABA. The attlp2 mutant was insensitive to ABA, but hypersensitive to oxidative stress at all stages of growth. ABA insensitivity conferred tolerance to salt and osmotic stresses at the germination and early seedling growth stages, but caused hypersensitivity to salt and drought stresses at advanced stages of growth. The OE lines were more sensitive to ABA, causing increased sensitivity to most stresses at the seed germination stage, but conferring tolerance to salt and osmotic stresses at more advanced stages of development. The stomata of the attlp2 mutant were less responsive to ABA and H2O2, while that of the OE lines exhibited greater sensitivity. Several ABA-regulated stress responsive marker genes were found to be downregulated in the mutant, but upregulated in the OE lines. The study establishes that AtTLP2 plays intricate roles in abiotic stress signaling, and the response may be largely ABA dependent.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Plantas Modificadas Genéticamente/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/fisiología , Proteínas F-Box/metabolismo
6.
Plant Cell Rep ; 42(1): 73-89, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251035

RESUMEN

KEY MESSAGE: OsiCRY2 is involved in light-regulated plant development and plays a role in regulating photomorphogenesis, plant height, flowering and most strikingly partial photomorphogenesis in dark. Cryptochrome 2 (CRY2), the blue/UV-A light photoreceptor in plants, has been reported to regulate photoperiod-dependent flowering and seedling photomorphogenesis (under low-intensity light). Among monocots, CRY2 has been reported from japonica rice, wheat, sorghum and barley. The two sub-species of rice, indica and japonica, exhibit a high degree of genetic variation and morphological and physiological differences. This article describes the characterization of CRY2 of indica rice (OsiCRY2). While the transcript levels of OsiCRY2 did not change significantly under blue light, its protein levels were found to decline with increased time duration under blue light. For phenotypic characterization, OsiCRY2 over-expression (OX) transgenics were generated in Oryza sativa Pusa Sugandh 2 (PS2) cultivar, a highly scented Basmati cultivar. The OsiCRY2OX transgenics displayed shorter coleoptiles and dwarfism than wild-type under blue light, white, and far-red light. Interestingly, even the dark-grown transgenics were shorter, concomitant with higher OsiCRY2 protein levels in transgenics than wild-type. Histological analysis revealed that the decrease in the length of the seedlings was due to a decrease in the length of the epidermal cells. The fully mature rice transgenics were shorter than the untransformed plants but flowered at the same time as wild-type. However, the OsiCRY2 Arabidopsis over-expressors exhibited early flowering by 10-15 days, indicating the potential and conservation of function of OsiCRY2. The whole-genome transcriptome profiling of rice transgenics revealed the differential up-regulation of several light-regulated genes in dark-grown coleoptiles. These data provide evidence that OsiCRY2 regulates photomorphogenesis, plant height, and flowering in indica rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Luz , Factores de Transcripción/genética , Arabidopsis/genética , Plantones/metabolismo , Células Receptoras Sensoriales/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo
7.
Mol Genet Genomics ; 297(6): 1689-1709, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36112212

RESUMEN

Heat stress transcription factors (Hsfs) are known to play a vital role in protecting plants against various abiotic stresses. Among the wild wheat relatives, Aegilops tauschii offers an excellent source of abiotic stress tolerance genes for improvement of bread wheat. However, little is known about its stress tolerance mechanisms. In this study, 22 AetHsf genes were identified in the genome of Aegilops tauschii and their chromosomal location, exon-intron structures, sub-cellular localization, phylogenetic and syntenic relationship were analyzed. Based on the conserved motif analysis, these Hsfs were further divided into group A, B and C. The interaction network analysis and expression profile of AetHsfs in different tissues predicted their interaction with diverse types of proteins and suggested their involvement in different developmental processes of the plant. The promoter analysis of AetHsfs showed the presence of abiotic stress-responsive, phytohormone-responsive, plant development-related and light-related cis-elements. Thus, we investigated the expression of Hsfs in Aegilops tauchii seedlings under various abiotic stress conditions and irradiated with different monochromatic lights. Most of the AetHsfs were found to be upregulated by heat stress, while some showed expression in drought, salinity and high light stress as well. Notably, the expression pattern of various AetHsfs showed their responsiveness toward dark and various light conditions (blue red and far-red) as well. Thus, this study provides novel insights into the potential role of AetHsfs in stress and light signaling pathways, which can further facilitate understanding of the stress tolerance mechanisms in Aegilops tauschii.


Asunto(s)
Aegilops , Aegilops/genética , Aegilops/metabolismo , Factores de Transcripción del Choque Térmico/genética , Filogenia , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
8.
Plant Mol Biol ; 110(1-2): 161-186, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831732

RESUMEN

Cryptochrome 2 (CRY2) perceives blue/UV-A light and regulates photomorphogenesis in plants. However, besides Arabidopsis, CRY2 has been functionally characterized only in native species of japonica rice and tomato. In the present study, the BnCRY2a, generating a relatively longer cDNA and harboring an intron in its 5'UTR, has been characterized in detail. Western blot analysis revealed that BnCRY2a is light labile and degraded rapidly by 26S proteasome when seedlings are irradiated with blue light. For functional analysis, BnCRY2a was over-expressed in Brassica juncea, a related species more amenable to transformation. The BnCRY2a over-expression (BnCRY2aOE) transgenics developed short hypocotyl and expanded cotyledons, accumulated more anthocyanin in light-grown seedlings, and displayed early flowering on maturity. Early flowering in BnCRY2aOE transgenics was coupled with the up-regulation of many flowering-related genes such as FT. The present study also highlights the differential light sensitivity of cry1 and cry2 in controlling hypocotyl elongation growth in Brassica. BnCRY2aOE seedlings developed much shorter hypocotyl under the low-intensity of blue light, while BnCRY1OE seedling hypocotyls were shorter under the high-intensity blue light, compared to untransformed seedlings.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Hipocótilo/genética , Luz , Plantones/genética , Plantones/metabolismo
9.
Genomics ; 114(3): 110346, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331861

RESUMEN

Mulberry is an important crop plant for the sericulture industry. Here, we report high-quality genome sequence of a cultivated Indian mulberry (Morus indica cv K2) obtained by combining data from four different technologies, including Illumina, single-molecule real-time sequencing, chromosome conformation capture and optical mapping, with a gene completeness of 96.5%. Based on the genome sequence, we identified 49.2% of repetitive DNA and 27,435 high-confidence protein-coding genes with >90% of them supported by transcript evidence. A comparative analysis with other plant genomes identified 4.8% of species-specific genes in the M. indica genome. Transcriptome profiling revealed tissue-specific and differential expression across multiple accessions of ~4.7% and 2-5% of protein-coding genes, respectively, implicated in diverse biological processes. Whole genome resequencing of 21 accessions/species revealed ~2.5 million single nucleotide polymorphisms and ~ 0.2 million insertions/deletions. These data and results provide a comprehensive resource to accelerate the genomics research in mulberry for its improvement.


Asunto(s)
Morus , Morus/genética , Genómica/métodos , Análisis de Secuencia de ADN , Perfilación de la Expresión Génica , Genoma de Planta
10.
J Exp Bot ; 72(22): 7826-7845, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34459895

RESUMEN

We have characterized a rice bZIP protein-coding gene OsbZIP62/OsFD7 that is expressed preferentially in the shoot apical meristem and during early panicle developmental stages in comparison with other OsFD genes characterized to date. Surprisingly, unlike OsFD1, OsFD7 interacts directly and more efficiently with OsFTLs; the interaction is strongest with OsFTL1 followed by Hd3a and RFT1, as confirmed by fluorescence lifetime imaging-Förster resonant energy transfer (FLIM-FRET) analysis. In addition, OsFD7 is phosphorylated at its C-terminal end by OsCDPK41 and OsCDPK49 in vitro, and this phosphorylated moiety is recognized by OsGF14 proteins. OsFD7 RNAi transgenics were late flowering; the transcript levels of some floral meristem identity genes (e.g. OsMADS14, OsMADS15, and OsMADS18) were also down-regulated. RNAi lines also exhibited dense panicle morphology with an increase in the number of primary and secondary branches resulting in longer panicles and more seeds, probably due to down-regulation of SEPALLATA family genes. In comparison with other FD-like proteins previously characterized in rice, it appears that OsFD7 may have undergone diversification during evolution, resulting in the acquisition of newer functions and thus playing a dual role in floral transition and panicle development in rice.


Asunto(s)
Oryza , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Genomics ; 113(3): 1247-1261, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705886

RESUMEN

Sensing a change in ambient temperature is key to survival among all living organisms. Temperature fluctuations due to climate change are a matter of grave concern since it adversely affects growth and eventually the yield of crop plants, including two of the major cereals, i.e., rice and wheat. Thus, to understand the response of rice seedlings to elevated temperatures, we performed microarray-based transcriptome analysis of two contrasting rice cultivars, Annapurna (heat tolerant) and IR64 (heat susceptible), by subjecting their seedlings to 37 °C and 42 °C, sequentially. The transcriptome analyses revealed a set of uniquely regulated genes and related pathways in red rice cultivar Annapurna, particularly associated with auxin and ABA as a part of heat stress response in rice. The changes in expression of few auxin and ABA associated genes, such as OsIAA13, OsIAA20, ILL8, OsbZIP12, OsPP2C51, OsDi19-1 and OsHOX24, among others, were validated under high-temperature conditions using RT-qPCR. In particular, the expression of auxin-inducible SAUR genes was enhanced considerably at both elevated temperatures. Further, using genes that expressed inversely under heat vs. cold temperature conditions, we built a regulatory network between transcription factors (TF) such as HSFs, NAC, WRKYs, bHLHs or bZIPs and their target gene pairs and determined regulatory coordination in their expression under varying temperature conditions. Our work thus provides useful insights into temperature-responsive genes, particularly under elevated temperature conditions, and could serve as a resource of candidate genes associated with thermotolerance or downstream components of temperature sensors in rice.


Asunto(s)
Oryza , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
12.
Plant Physiol Biochem ; 161: 98-112, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33581623

RESUMEN

Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citocininas , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
13.
Front Plant Sci ; 11: 584011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178250

RESUMEN

Rice is the model plant system for monocots and the sequencing of its genome has led to the identification of a vast array of genes for characterization. The tedious and time-consuming effort of raising rice transgenics has significantly delayed the pace of rice research. The lack of highly efficient transient assay protocol for rice has only added to the woes which could have otherwise helped in rapid deciphering of the functions of genes. Here, we describe a technique for efficient transient gene expression in rice seedlings. It makes use of co-cultivation of 6-day-old rice seedlings with Agrobacterium in the presence of a medium containing Silwet® L-77, acetosyringone and glucose. Seedlings can be visualized 9 days after co-cultivation for transient expression. The use of young seedlings helps in significantly reducing the duration of the experiment and facilitates the visualization of rice cells under the microscope as young leaves are thinner than mature rice leaves. Further, growth of seedlings at low temperature, and the use of surfactant along with wounding and vacuum infiltration steps significantly increases the efficiency of this protocol and helps in bypassing the natural barriers in rice leaves, which hinders Agrobacterium-based transformation in this plant. This technique, therefore, provides a shorter, efficient and cost-effective way to study transient gene function in intact rice seedling without the need for a specialized device like particle gun.

14.
Plant Direct ; 4(6): e00234, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32582877

RESUMEN

The members of early auxin response gene family, Aux/IAA, encode negative regulators of auxin signaling but play a central role in auxin-mediated plant development. Here we report the interaction of an Aux/IAA protein, AtIAA14, with Drought-induced-19 (Di19-3) protein and its possible role in auxin signaling. The Atdi19-3 mutant seedlings develop short hypocotyl, both in light and dark, and are compromised in temperature-induced hypocotyl elongation. The mutant plants accumulate more IAA and also show altered expression of NIT2, ILL5, and YUCCA genes involved in auxin biosynthesis and homeostasis, along with many auxin responsive genes like AUX1 and MYB77. Atdi19-3 seedlings show enhanced root growth inhibition when grown in the medium supplemented with auxin. Nevertheless, number of lateral roots is low in Atdi19-3 seedlings grown on the basal medium. We have shown that AtIAA14 physically interacts with AtDi19-3 in yeast two-hybrid (Y2H), bimolecular fluorescence complementation, and in vitro pull-down assays. However, the auxin-induced degradation of AtIAA14 in the Atdi19-3 seedlings was delayed. By expressing pIAA14::mIAA14-GFP in Atdi19-3 mutant background, it became apparent that both Di19-3 and AtIAA14 work in the same pathway and influence lateral root development in Arabidopsis. Gain-of-function slr-1/iaa14 (slr) mutant, like Atdi19-3, showed tolerance to abiotic stress in seed germination and cotyledon greening assays. The Atdi19-3 seedlings showed enhanced sensitivity to ethylene in triple response assay and AgNO3, an ethylene inhibitor, caused profuse lateral root formation in the mutant seedlings. These observations suggest that AtDi19-3 interacting with AtIAA14, in all probability, serves as a positive regulator of auxin signaling and also plays a role in some ethylene-mediated responses in Arabidopsis. SIGNIFICANCE STATEMENT: This study has demonstrated interaction of auxin responsive Aux/IAA with Drought-induced 19 (Di19) protein and its possible implication in abiotic stress response.

15.
Physiol Mol Biol Plants ; 26(6): 1087-1098, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32549674

RESUMEN

We present here a tribute to Satish Chandra Maheshwari (known to many as SCM, or simply Satish), one of the greatest plant biologists of our time. He was born on October 4, 1933, in Agra, Uttar Pradesh, India, and passed away in Jaipur, Rajasthan, India, on June 12, 2019. He is survived by two of his younger sisters (Sushila Narsimhan and Saubhagya Agrawal), a large number of friends and students from around the world. He has not only been the discoverer of pollen haploids in plants but has also contributed immensely to the field of duckweed research and gene regulation. In addition, he has made discoveries in the area of phytochrome research. The scientific community will always remember him as an extremely dedicated teacher and a passionate researcher; and for his wonderful contributions in the field of Plant Biology. See Sopory and Maheshwari (2001) for a perspective on the beginnings of Plant Molecular Biology in India; and see Raghuram (2002a, b) for the growth and contributions of this field in India.

16.
Genomics ; 111(6): 1699-1712, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30496782

RESUMEN

Abiotic stresses like drought are detrimental for growth and development and lead to loss in crop production. To be able to adapt and survive under such adverse conditions, synchronous regulation of a rather large number of genes is required. Here, we have used a bioinformatics approach to identify gene groups and associated pathways from microarray and RNA-seq experiments that are restricted in their gene expression amplitude within fold change intervals (FCI) under drought stress conditions. We find that the expression of genes as functional groups is coordinated quantitatively, in a fold change specific manner, and differs among three rice cultivars distinct in their drought stress response. By networking these groups and further categorization into components like ubiquitin proteasome system, we identify relatively less studied E2 ubiquitin conjugating enzyme coding genes as an important constituent of differential drought stress response in rice. By extending this approach to find hexamer DNA motifs in the upstream promoter regions of genes within the FCIs under stress, we find that genes with strong to very strong or a moderate expression under stress are coordinated through cis-regulatory motifs. Few of these, such as TSO1, L-Box, PE1, GT binding site, ABRE/G-box or AP2/ERF binding site can be candidate cis-regulatory motifs to coordinate fold change limited gene expression under drought stress. This work thus provides an insight into a quantitative regulation of gene expression under drought stress in rice and a useful resource for designing approaches towards coordinating the expression of identified candidate genes under stress in order to achieve drought tolerance in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Elementos de Respuesta , Estrés Fisiológico , ADN de Plantas/genética , ADN de Plantas/metabolismo , Deshidratación/genética , Deshidratación/metabolismo , Motivos de Nucleótidos , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética
17.
Sci Rep ; 8(1): 3203, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453432

RESUMEN

The circadian clock in plants is the intrinsic rhythmic expression of thousands of genes in a 24 h period, which is set by the day-night cycles in the environment. The study of the circadian clock often requires expression profiling of genes over a large number of samples for which RT-qPCR is invariably used. Reliability of the results depends largely on the house-keeping genes, which serve as control and thus should be chosen carefully to prevent erroneous results. In this study, ten house-keeping genes were chosen from rice for stability analysis with 48 tissue samples harvested from plants subjected to diurnal/circadian cycles. Although, all the genes were found to be stable, however, six of them showed cyclic expression patterns and caused major changes in the expression profiles of the target genes when used to normalize their expression data, thereby making them poor candidates for diurnal/circadian studies. In conclusion, reference genes need to be selected for diurnal/circadian studies with extra caution as more than 80% of transcriptome in plants undergoes cycling, which remains undetected by the gene stability assessment software and can severely affect the RT-qPCR based gene expression profiling. The geometric mean of two or more most stable reference genes is hence recommended for diurnal/circadian studies in plants.


Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Esenciales/genética , Oryza/genética , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia
18.
Environ Microbiol ; 20(1): 402-419, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29322681

RESUMEN

Tuberculosis (TB) is primarily associated with decline in immune health status. As gut microbiome (GM) is implicated in the regulation of host immunity and metabolism, here we investigate GM alteration in TB patients by 16S rRNA gene and whole-genome shotgun sequencing. The study group constituted of patients with pulmonary TB and their healthy household contacts as controls (HCs). Significant alteration of microbial taxonomic and functional capacity was observed in patients with active TB as compared to the HCs. We observed that Prevotella and Bifidobacterium abundance were associated with HCs, whereas butyrate and propionate-producing bacteria like Faecalibacterium, Roseburia, Eubacterium and Phascolarctobacterium were significantly enriched in TB patients. Functional analysis showed reduced biosynthesis of vitamins and amino acids in favour of enriched metabolism of butyrate and propionate in TB subjects. The TB subjects were also investigated during the course of treatment, to analyse the variation of GM. Although perturbation in microbial composition was still evident after a month's administration of anti-TB drugs, significant changes were observed in metagenome gene pool that pointed towards recovery in functional capacity. Therefore, the findings from this pilot study suggest that microbial dysbiosis may contribute to pathophysiology of TB by enhancing the anti-inflammatory milieu in the host.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Microbioma Gastrointestinal , Propionatos/metabolismo , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Adulto , Bacterias/clasificación , Disbiosis , Femenino , Humanos , Masculino , Metagenoma , Persona de Mediana Edad , Proyectos Piloto , ARN Ribosómico 16S , Tuberculosis Pulmonar/metabolismo , Adulto Joven
19.
Plant Physiol ; 176(3): 2148-2165, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29295941

RESUMEN

Regulated proteolysis by the ubiquitin-26S proteasome system challenges transcription and phosphorylation in magnitude and is one of the most important regulatory mechanisms in plants. This article describes the characterization of a rice (Oryza sativa) auxin-responsive Kelch-domain-containing F-box protein, OsFBK1, found to be a component of an SCF E3 ligase by interaction studies in yeast. Rice transgenics of OsFBK1 displayed variations in anther and root secondary cell wall content; it could be corroborated by electron/confocal microscopy and lignification studies, with no apparent changes in auxin content/signaling pathway. The presence of U-shaped secondary wall thickenings (or lignin) in the anthers were remarkably less pronounced in plants overexpressing OsFBK1 as compared to wild-type and knockdown transgenics. The roots of the transgenics also displayed differential accumulation of lignin. Yeast two-hybrid anther library screening identified an OsCCR that is a homolog of the well-studied Arabidopsis (Arabidopsis thaliana) IRX4; OsFBK1-OsCCR interaction was confirmed by fluorescence and immunoprecipitation studies. Degradation of OsCCR mediated by SCFOsFBK1 and the 26S proteasome pathway was validated by cell-free experiments in the absence of auxin, indicating that the phenotype observed is due to the direct interaction between OsFBK1 and OsCCR. Interestingly, the OsCCR knockdown transgenics also displayed a decrease in root and anther lignin depositions, suggesting that OsFBK1 plays a role in the development of rice anthers and roots by regulating the cellular levels of a key enzyme controlling lignification.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Flores/citología , Oryza/metabolismo , Raíces de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lignina/genética , Lignina/metabolismo , Oryza/citología , Oryza/genética , Raíces de Plantas/citología , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética
20.
Plant Physiol ; 176(2): 1262-1285, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28775143

RESUMEN

Plants have evolved an intricate network of sensory photoreceptors and signaling components to regulate their development. Among the light signaling components identified to date, HY5, a basic leucine zipper (bZIP) transcription factor, has been investigated extensively. However, most of the work on HY5 has been carried out in Arabidopsis (Arabidopsis thaliana), a dicot. In this study, based on homology search and phylogenetic analysis, we identified three homologs of AtHY5 in monocots; however, AtHYH (HY5 homolog) homologs are absent in the monocots analyzed. Out of the three homologs identified in rice (Oryza sativa), we have functionally characterized OsbZIP48OsbZIP48 was able to complement the Athy5 mutant. OsbZIP48 protein levels are developmentally regulated in rice. Moreover, the OsbZIP48 protein does not degrade in dark-grown rice and Athy5 seedlings complemented with OsbZIP48, which is in striking contrast to AtHY5. In comparison with AtHY5, which does not cause any change in hypocotyl length when overexpressed in Arabidopsis, the overexpression of full-length OsbZIP48 in rice transgenics reduced the plant height considerably. Microarray analysis revealed that OsKO2, which encodes ent-kaurene oxidase 2 of the gibberellin biosynthesis pathway, is down-regulated in OsbZIP48OE and up-regulated in OsbZIP48KD transgenics as compared with the wild type. Electrophoretic mobility shift assay showed that OsbZIP48 binds directly to the OsKO2 promoter. The RNA interference lines and the T-DNA insertional mutant of OsbZIP48 showed seedling-lethal phenotypes despite the fact that roots were more proliferative during early stages of development in the T-DNA insertional mutant. These data provide credible evidence that OsbZIP48 performs more diverse functions in a monocot system like rice in comparison with its Arabidopsis ortholog, HY5.


Asunto(s)
Pleiotropía Genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Antocianinas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorofila/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Luz , Mutación , Proteínas Nucleares/genética , Oryza/fisiología , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Dominios Proteicos , Plantones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...